论文标题
模拟旋转流中的重力
Simulating gravity in rotational flow
论文作者
论文摘要
我们考虑在非权威主义框架中的经典流体。该流量被认为是正压,无粘性和旋转的。我们研究了稳态背景流的线性扰动。我们从Bernoulli常数(标量场)和涡流(向量场)的一阶衍生物(位置和时间坐标)构成的电流的电流构造的电流构造的电流方程中找到了声学度量。我们宁愿表明,电流的保护方程在高频极限下还原为无质量标量场方程。与当代作品相反,我们的作品表明,即使我们找不到与弯曲时空中无质量标量场方程相似的波动方程(旋转流),但仍然存在通过保护方程式的模拟时空。考虑到速度潜力和CLEBESCH系数,我们发现仅对于某些特定系统,才能找到当前的保护方程,从而产生相同的模拟时空。我们得出的结论是,对于旋转流,研究伯诺利在速度潜力和clebsch系数上的线性扰动是明智的。
We consider classical fluids in non-relativistic framework. The flow is considered to be barotropic, inviscid and rotational. We study the linear perturbations over a steady state background flow. We find the acoustic metric from the conservation equation of a current constructed from linear perturbation of first order derivatives (in position and time coordinate) of Bernoulli's constant (scalar field) and vorticity (a vector field). We have rather shown that the conservation equation of current reduces to a massless scalar field equation in the high frequency limit. In contrast to the contemporary works, our work shows that even if we can not find a wave equation (in rotational flow) which is structurally similar to a massless scalar field equation in curved space-time, but still an analogue space-time exists through a conservation equation. Considering velocity potential and Clebesch coefficients, we find that only for some specific systems current conservation equation can be found yielding the same analogue space-time. We conclude that for rotational flows, it is wise to study linear perturbation of Bernoulli's constant over the velocity potential and Clebsch coefficients.