论文标题
由于平均场诱发的燕尾
Non-exponential tunneling due to mean-field induced swallowtails
论文作者
论文摘要
通常,能量水平在不响应控制参数的变化而不会分叉的情况下变化。分叉可以导致能量谱中的环或燕尾。支持燕尾的最简单的量子哈密顿量是非线性$ 2 \ times 2 $ hamiltonian,其非零偏外元素和对角线元素以及依赖两种状态的人口差异。这项工作在移动的一维光学晶格中使用超电原子实验实现了这种哈密顿量。观察到了自我捕获和非指数隧道概率,这是支持燕尾的带状结构的标志性标志。理论与实验之间的良好一致性验证了光学晶格系统是一个强大的研究平台,例如,约瑟夫森结物理学和环形几何形状的超流量。
Typically, energy levels change without bifurcating in response to a change of a control parameter. Bifurcations can lead to loops or swallowtails in the energy spectrum. The simplest quantum Hamiltonian that supports swallowtails is a non-linear $2 \times 2$ Hamiltonian with non-zero off-diagonal elements and diagonal elements that depend on the population difference of the two states. This work implements such a Hamiltonian experimentally using ultracold atoms in a moving one-dimensional optical lattice. Self-trapping and non-exponential tunneling probabilities, a hallmark signature of band structures that support swallowtails, are observed. The good agreement between theory and experiment validates the optical lattice system as a powerful platform to study, e.g., Josephson junction physics and superfluidity in ring-shaped geometries.