论文标题

超高温的声子气中的大型准粒子随机步行

Random walk of a massive quasiparticle in the phonon gas of an ultralow temperature superfluid

论文作者

Castin, Yvan

论文摘要

我们考虑在低温$ t $的3D同质超流体,具有2种激发类型,无间隙的声子在低波数处具有线性分散关系,以及围绕极端物质的二次散发器的散布准粒子。我们计算了一个准颗粒上的声子的散射幅度,以在所有亚音速粒子速度的$ t $中领先订单,而虚拟声子穿着精确的渐近状态之间具有$ S $ -MATRIX形式。然后,我们表征了超流体中准颗粒的不稳定运动,因为它通过平均力$ f(k)$,纵向和横向$ K $依赖性动量扩散系数以及空间扩散系数通过平均力$ f(k)$,纵向和横向$ k $ k $依赖的动量扩散系数。在最低位置,分散关系的$ k_0 $,速度消失,$ f(k)$随速度与各向同性摩擦系数线性变化;如果$ k_0 = 0 $,则动量扩散也是各向同性的,$ f(k_0)= 0 $;如果$ k_0> 0 $,则不是,而$ f(k_0)$是非零的,但在$ t $中的一个订单中对摩擦进行了旋转。速度时间相关函数(其积分是空间扩散系数),如果$ k_0 = 0 $,则平均速度阻尼速率会衰减;如果$ k_0> 0 $,则具有第二个指数组件,幅度和阻尼率降低了因子$ \ propto t $(这是速度方向的热化速率)。我们还表征了靠近稳定域声音边缘的力和动量扩散。预计我们的一般表达方式将准确地限制为$ t $。我们在BCS近似中说明了它们,用于在旋转1/2费米子的超氟中的费米子准粒子(未配对的费米),可以在平坦的底部陷阱中实现冷原子。我们还驳斥了Lerch,Bartosch和Kopietz(2008)的陈述,即在这样的超氟中不会有费米金准粒子。

We consider a 3D homogeneous superfluid at low temperature $T$ with 2 types of excitations, gapless phonons with a linear dispersion relation at low wavenumber, and gapped quasiparticles with a quadratic dispersion relation around extrema. We calculate the scattering amplitude of a phonon on a quasiparticle to leading order in $T$ for all subsonic quasiparticle velocities, with a $S$-matrix formalism between exact asymptotic states dressed by virtual phonons. We then characterize the erratic motion of the quasiparticle in the superfluid due to its unceasing collisions with thermal phonons through mean force $F(k)$, longitudinal and transverse $k$-dependent momentum diffusion coefficients, and spatial diffusion coefficient. At the minimum location $k_0$ of the dispersion relation, where the velocity vanishes, $F(k)$ varies linearly with velocity with an isotropic friction coefficient; if $k_0=0$, the momentum diffusion is also isotropic and $F(k_0)=0$; if $k_0>0$, it is not, and $F(k_0)$ is nonzero but subleading with respect to friction by one order in $T$. The velocity time correlation function, whose integral is the spatial diffusion coefficient, decays with the mean velocity damping rate if $k_0=0$; if $k_0>0$, it has a second exponential component, with an amplitude and a damping rate lower by a factor $\propto T$ (it is the velocity direction thermalization rate). We also characterize force and momentum diffusion close to the stability domain sonic edge. Our general expressions are expected to be exact to leading order in $T$. We illustrate them in the BCS approximation, for a fermionic quasiparticle (an unpaired fermion) in a superfluid of spin 1/2 fermions, realisable with cold atoms in flat bottom traps. We also refute the statement of Lerch, Bartosch and Kopietz (2008), that there would be no fermionic quasiparticle in such a superfluid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源