论文标题
关于光子晶体中拓扑角模式的鲁棒性
On the robustness of topological corner modes in photonic crystals
论文作者
论文摘要
我们分析了拓扑光子晶体中角模式的鲁棒性,以$ C_6 $ -SMMETRIC呼吸蜂窝光子晶体为例。首先,我们采用拓扑量子化学和威尔逊循环计算,以证明散装晶体的拓扑特性来自阻塞的原子极限阶段。然后,我们表征使用半分析模型的间隙边缘模式中出现的拓扑角模式,确定了适当的真实空间拓扑不变性。我们首次提供了详细的说明,详细说明了长期相互作用对光子晶体中拓扑模式的影响,并量化了它们对扰动的鲁棒性。我们得出的结论是,尽管光子长期相互作用不可避免地打破了手性对称性,但角模式受到晶格对称性的保护。
We analyze the robustness of corner modes in topological photonic crystals, taking a $C_6$-symmetric breathing honeycomb photonic crystal as an example. First, we employ topological quantum chemistry and Wilson loop calculations to demonstrate that the topological properties of the bulk crystal stem from an obstructed atomic limit phase. We then characterize the topological corner modes emerging within the gapped edge modes employing a semi-analytical model, determining the appropriate real space topological invariants. For the first time, we provide a detailed account of the effect of long-range interactions on the topological modes in photonic crystals, and we quantify their robustness to perturbations. We conclude that, while photonic long-range interactions inevitably break chiral symmetry, the corner modes are protected by lattice symmetries.