论文标题

随机到达的在线差异最小化

Online Discrepancy Minimization for Stochastic Arrivals

论文作者

Bansal, Nikhil, Jiang, Haotian, Meka, Raghu, Singla, Sahil, Sinha, Makrand

论文摘要

在随机在线矢量平衡问题中,向量$ v_1,v_2,\ ldots,v_t $由$ \ mathbb {r}^n $中的任意分布独立选择,必须立即给出$ \ pm $ agn。目的是保留差异向量的规范,即签名的前缀和签名范围,以便给定目标规范。 我们在上述在线随机环境中考虑了差异理论中一些最著名的问题,并给出算法,这些算法与已知的离线界限匹配最多可达$ \ MATHSF {polylog}(nt)$因素。这大大概括并改善了班萨尔,江,辛格拉和辛哈(Stoc'20)的先前结果。特别是,对于Komlós问题,其中$ \ | v_t \ | _2 \ leq 1 $对于每个$ t $,我们的算法成就$ \ tilde {o}(1)$差异具有很高的可能性,以提高了先前的$ \ tilde {o}(O}(n^{n^{3/3/2/2/3/2})$。对于Tusnády最大程度地减少与轴对准框的差异的问题,我们获得了一个$ o(\ log^{d+4} t)$绑定的,以在点上进行任意分布。以前的技术仅适用于产品分布,并给出了较弱的$ o(\ log^{2d+1} t)$。我们还考虑了Banaszczyk的设置,在该设置中,给定对称的凸面$ k $,带有高斯措施至少$ 1/2 $,我们的算法实现了$ \ tilde {o}(1)$差异,以$ k $用于$ k $的标准,用于带有$ k $的标准,该标准带有副指数。 我们的关键思想是引入一种潜力,该潜力还对差异向量如何发展产生限制,从而使我们能够维持某些抗浓缩属性。对于Banaszczyk设置,我们通过将其与通用链接的想法相结合,进一步增强了这一潜力。最后,我们还将这些结果扩展到在线多色差异的设置。

In the stochastic online vector balancing problem, vectors $v_1,v_2,\ldots,v_T$ chosen independently from an arbitrary distribution in $\mathbb{R}^n$ arrive one-by-one and must be immediately given a $\pm$ sign. The goal is to keep the norm of the discrepancy vector, i.e., the signed prefix-sum, as small as possible for a given target norm. We consider some of the most well-known problems in discrepancy theory in the above online stochastic setting, and give algorithms that match the known offline bounds up to $\mathsf{polylog}(nT)$ factors. This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha (STOC' 20). In particular, for the Komlós problem where $\|v_t\|_2\leq 1$ for each $t$, our algorithm achieves $\tilde{O}(1)$ discrepancy with high probability, improving upon the previous $\tilde{O}(n^{3/2})$ bound. For Tusnády's problem of minimizing the discrepancy of axis-aligned boxes, we obtain an $O(\log^{d+4} T)$ bound for arbitrary distribution over points. Previous techniques only worked for product distributions and gave a weaker $O(\log^{2d+1} T)$ bound. We also consider the Banaszczyk setting, where given a symmetric convex body $K$ with Gaussian measure at least $1/2$, our algorithm achieves $\tilde{O}(1)$ discrepancy with respect to the norm given by $K$ for input distributions with sub-exponential tails. Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector evolves, allowing us to maintain certain anti-concentration properties. For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic chaining. Finally, we also extend these results to the setting of online multi-color discrepancy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源