论文标题

通过深入的重复增强学习的副总强化学习,在部分可观察的多雾网络中,卸载和资源分配的异质任务分配

Heterogeneous Task Offloading and Resource Allocations via Deep Recurrent Reinforcement Learning in Partial Observable Multi-Fog Networks

论文作者

Baek, Jungyeon, Kaddoum, Georges

论文摘要

随着无线服务和应用程序变得越来越复杂,需要更快,更高的能力网络,因此需要根据每个应用程序的要求有效地管理日益复杂的任务。在这方面,FOG计算可以将虚拟化服务器集成到网络中,并使云服务更接近End设备。与云服务器相反,雾节的计算能力有限,因此单个雾节点可能无法计算强度的任务。在这种情况下,通过选择合适的节点和适当的资源管理,同时保证用户的服务质量(QoS)要求,在雾节点上卸载任务卸载尤其有用。本文研究了多个模具节点系统中的异构服务任务的联合任务卸载和资源分配控制的设计。该问题被表述为一种可观察到的随机游戏,在该游戏中,每个雾节都可以合作以最大化聚合的本地奖励,而节点只能访问本地观察。为了处理部分可观察性,我们采用了深层Q-NETWORK(DRQN)方法来近似最佳值函数。然后将解决方案与深层Q-NETWORK(DQN)和深卷积Q-Network(DCQN)方法进行比较,以评估不同神经网络的性能。此外,为了确保神经网络的收敛性和准确性,采用了调整后的探索方法。前提是数值结果表明,所提出的算法可以达到比基线方法更高的平均成功率和更高的平均溢出。

As wireless services and applications become more sophisticated and require faster and higher-capacity networks, there is a need for an efficient management of the execution of increasingly complex tasks based on the requirements of each application. In this regard, fog computing enables the integration of virtualized servers into networks and brings cloud services closer to end devices. In contrast to the cloud server, the computing capacity of fog nodes is limited and thus a single fog node might not be capable of computing-intensive tasks. In this context, task offloading can be particularly useful at the fog nodes by selecting the suitable nodes and proper resource management while guaranteeing the Quality-of-Service (QoS) requirements of the users. This paper studies the design of a joint task offloading and resource allocation control for heterogeneous service tasks in multi-fog nodes systems. This problem is formulated as a partially observable stochastic game, in which each fog node cooperates to maximize the aggregated local rewards while the nodes only have access to local observations. To deal with partial observability, we apply a deep recurrent Q-network (DRQN) approach to approximate the optimal value functions. The solution is then compared to a deep Q-network (DQN) and deep convolutional Q-network (DCQN) approach to evaluate the performance of different neural networks. Moreover, to guarantee the convergence and accuracy of the neural network, an adjusted exploration-exploitation method is adopted. Provided numerical results show that the proposed algorithm can achieve a higher average success rate and lower average overflow than baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源