论文标题
拓扑二元型陶器螺栓/螺母 - 热力学和第一法
Topological dyonic Taub-Bolt/NUT-AdS: Thermodynamics and first law
论文作者
论文摘要
由于欧几里得陶伯螺栓/坚果溶液的缺少丝弦的动机,我们提出了一种新的治疗方法,用于研究这些Spactime的热力学。这种处理是基于引入新的电荷,$ n =σ\,n $(其中$ n $是螺母充电,$σ$有些恒定)以及其共轭热力学潜在$φ_n$。在识别一个空间坐标后,这些溶液的边界除了恒定-r表面外,还包含两个类似环形的表面。对于这些溶液,我们表明这些Annuli表面接收电气,磁性和质量/能量通量,因此,它们对这些保守的电荷有非平凡的贡献。计算我们发现的这些保守的电荷,$ q_e = q^{\ infty} _e-2nφ_m$,$ q_m = q^{\ infty} _m+2nφ_e$和$ \ mathfrak {m} = m-2nφ_n$是电荷,磁性电荷和质量在$ n = 0 $情况下,而$φ_e$和$φ_M$是电势和磁性电位。计算出的热力学量遵守热力学的第一定律,而熵是地平线的区域。此外,所有这些数量都遵守了Smarr的关系。我们通过计算哈密顿量及其差异来证明这些结果的一致性,该变异重现了第一定律。
Motivated by the absence of Misner string in the Euclidean Taub-Bolt/NUT solutions with flat horizons, we present a new treatment for studying the thermodynamics of these spactimes. This treatment is based on introducing a new charge, $N=σ\, n$ (where $n$ is the nut charge and $σ$ is some constant) and its conjugate thermodynamic potential $Φ_N$. Upon identifying one of the spatial coordinates, the boundary of these solutions contains two annulus-like surfaces in addition to the constant-r surface. For these solutions, we show that these annuli surfaces receive electric, magnetic and mass/energy fluxes, therefore, they have nontrivial contributions to these conserved charges. Calculating these conserved charges we find, $Q_e = Q^{\infty}_e-2NΦ_m$, $Q_m =Q^{\infty}_m+2NΦ_e$ and $\mathfrak{M} =M-2NΦ_N$, where $Q^{\infty}_e$, $Q^{\infty}_m$, $M$ are electric charge, magnetic charge and mass in the $n=0$ case, while $Φ_e$ and $Φ_m$ are the electric and magnetic potentials. The calculated thermodynamic quantities obey the first law of thermodynamics while the entropy is the area of the horizon. Furthermore, all these quantities obey Smarr's relation. We show the consistency of these results through calculating the Hamiltonian and its variation which reproduces the first law.