论文标题
在$ q $ - ZETA功能上,与一对$ Q $ -Bernoulli数字和多项式相关的功能相关
On $q$-analogs of zeta functions associated with a pair of $q$-analogs of Bernoulli numbers and polynomials
论文作者
论文摘要
在本文中,我们使用两种不同的方法来介绍Riemann的Zeta功能的$ Q $ -Analogs,并证明它们在整数中的价值与Ismail和Mansour引入的$ Q $ -Bernoulli和$ Q $ euler的数字有关[分析和应用程序[分析和应用程序,{\ bf {\ bf {\ bf {17}} {17}}},6,2019,855],2019,853.95]。
In this paper, we use two different approaches to introduce $q$-analogs of Riemann's zeta function and prove that their values at even integers are related to the $q$-Bernoulli and $q$ Euler's numbers introduced by Ismail and Mansour [Analysis and Applications, {\bf{17}}, 6, 2019, 853--895].