论文标题
在四面体上的卷曲 - 卷曲元素
Curl-curl conforming elements on tetrahedra
论文作者
论文摘要
在[24]中,我们提出了h(curl^2) - 在三角形和矩形上都包含元素。这个元素家族提供了一种全新的方法,可以在2个维度上解决四轮问题。在本文中,我们将焦点转换为3个维度,并构建一个H(curl^2) - 合并四面体有限元。已证明新提出的元素具有最佳的插值误差估计。具有四面体元素,我们可以通过符合有限元方法来解决任何Lipschitz域中的四曲问题。我们还提供了几个数值示例,以使用我们的元素来解决四曲问题。数值实验的结果显示了我们元素的有效性和正确性。
In [24], we proposed H(curl^2)-conforming elements on both a triangle and a rectangle. This family of elements provides a brand new method to solve the quad-curl problem in 2 dimensions. In this paper, we turn our focus to 3 dimensions and construct an H(curl^2)-conforming tetrahedral finite element. The newly proposed element has been proved to have the optimal interpolation error estimate. Having tetrahedral elements, we can solve the quad-curl problem in any Lipschitz domain by conforming finite element method. We also provide several numerical examples of using our element to solve the quad-curl problem. The results of the numerical experiments show the effectiveness and correctness of our element.