论文标题
代表半纹身作为关系
Representing Semilattices as Relations
论文作者
论文摘要
我们代表有限的联接 - 犹太人,并加入保护形态,是一个类别,其对象和摩根是二元关系。它是$ \ mathsf {rel} _f $的箭头类别的商类别,在其中出现自偶性,通过对对象和形态上的关系进行关系来产生。我们使用这两种类别研究了张量产品和“紧密”张量产品。我们还完善了分类等效性,即具有有限晶格形态的有限de Morgan代数等于其对象是对称关系的类别。
We represent finite join-semilattices and join-preserving morphisms as a category whose objects and morphisms are binary relations. It is a quotient category of $\mathsf{Rel}_f$'s arrow category, where self-duality arises by taking the relational converse on both objects and morphisms. We investigate the tensor product and the "tight" tensor product using both categories. We also refine the categorical equivalence i.e. finite De Morgan algebras with bounded lattice morphisms are equivalent to a category whose objects are the symmetric relations.