论文标题

p-canonical形式和Drazin倒置

P-canonical forms and Drazin inverses

论文作者

Moucouf, Mohammed

论文摘要

在本文中,定义了$(a^{k})_ {k} $的$ \ Mathcal {p} $ - 定义了$(a^{k})_ {k} $(或简单地定义了矩阵$ a $),并证明了其某些属性。还向他们展示了我们如何从他们中得出有关矩阵$ a $的许多有趣的信息。此外,还可以证明,$ a $ $ a $的规范形式可以写成两个部分的总和,即$ a $的几何和非几何零件,以及$ \ nathcal {p} $ $ a $ a $ a $ a $ a $ a $ a $ a $的规范形式的$ - $ a $的一部分。最后,提供了几个示例来说明获得的结果。

In this paper, $\mathcal{P}$-canonical forms of $(A^{k})_{k}$ (or simply of the matrix $A$) are defined and some of their properties are proved. It is also shown how we can deduce from them many interesting informations about the matrix $A$. In addition, it is proved that the $\mathcal{P}$-canonical forms of $A$ can be written as a sum of two parts, the geometric and the non-geometric parts of $A$, and that the $\mathcal{P}$-canonical form of the Drazin inverse $A_{d}$ of $A$ can be deduced by simply plugging $-k$ for $k$ in the geometric part of $A$. Finally, several examples are provided to illustrate the obtained results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源