论文标题

多尺度混合成员MPC的双动态编程

Dual Dynamic Programming for Multi-Scale Mixed-Integer MPC

论文作者

Kumar, Ranjeet, Wenzel, Michael J., ElBsat, Mohammad N., Risbeck, Michael J., Drees, Kirk H., Zavala, Victor M.

论文摘要

我们提出了一个双重动态整数编程(DDIP)框架,用于解决多尺度的混合模型预测控制(MPC)问题。此类问题在涉及长范围和/或精细时间离散以及混合智能状态和控制的应用中出现。该方法使用嵌套的切割平面方案,该方案在时间范围内向前和向后扫描以适应性地近似成本到GO的功能。提出的DDIP方案可以处理具有混合构成控制和状态的一般MPC公式,并且可以在块时间分区上进行前回扫。我们通过解决中央供暖,通风和空调(HVAC)植物时会出现的混合企业MPC问题来证明拟议方案的性能。我们表明,所提出的方案是可扩展的,并且极大地胜过最先进的混合求解器。

We propose a dual dynamic integer programming (DDIP) framework for solving multi-scale mixed-integer model predictive control (MPC) problems. Such problems arise in applications that involve long horizons and/or fine temporal discretizations as well as mixed-integer states and controls (e.g., scheduling logic and discrete actuators). The approach uses a nested cutting-plane scheme that performs forward and backward sweeps along the time horizon to adaptively approximate cost-to-go functions. The DDIP scheme proposed can handle general MPC formulations with mixed-integer controls and states and can perform forward-backward sweeps over block time partitions. We demonstrate the performance of the proposed scheme by solving mixed-integer MPC problems that arise in the scheduling of central heating, ventilation, and air-conditioning (HVAC) plants. We show that the proposed scheme is scalable and dramatically outperforms state-of-the-art mixed-integer solvers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源