论文标题

哥斯达黎加零熵的衍生物的下限

Lower Bound on Derivatives of Costa's Differential Entropy

论文作者

Guo, Laigang, Yuan, Chun-Ming, Gao, Xiao-Shan

论文摘要

几个猜想涉及$ n $二维随机矢量的差分熵$ h(x_t)$的下限。 Cheng和Geng猜想$ H(X_T)$是完全单调的,即$ C_1(m,n):(-1)^{m+1}(d^m/d^m t)h(x_t)h(x_t)\ ge0 $。 McKean猜想Gaussian $ x_ {gt} $达到了$(-1)^{m+1}(d^m/d^m t)h(x_t)$的最低t)h(x_t)\ ge(-1)^{m+1}(d^m/d^m t)h(x_ {gt})$。麦基恩的猜想仅在单变量案例中考虑:$ C_2(1,1)$和$ C_2(2,1)$由McKean和$ C_2(I,1)证明,i = 3,4,5 $在登录concave条件下证明了Zhang-anantharam-geng的证明。在本文中,我们证明了$ C_2(1,N)$,$ C_2(2,N)$,并观察到McKean的猜想可能不是$ n> 1 $和$ m> 2 $的猜想。我们进一步提出了一个较弱的版本$ C_3(m,n):(-1)^{m+1}(d^m/d^m t) $ c_3(3,3)$,$ c_3(3,4)$,$ c_3(4,2)$在log-concave条件下。基于半决赛编程提出了证明$ C_L(M,N)$的系统过程,并使用此过程证明了上述结果。

Several conjectures concern the lower bound for the differential entropy $H(X_t)$ of an $n$-dimensional random vector $X_t$ introduced by Costa. Cheng and Geng conjectured that $H(X_t)$ is completely monotone, that is, $C_1(m,n): (-1)^{m+1}(d^m/d^m t)H(X_t)\ge0$. McKean conjectured that Gaussian $X_{Gt}$ achieves the minimum of $(-1)^{m+1}(d^m/d^m t)H(X_t)$ under certain conditions, that is, $C_2(m,n): (-1)^{m+1}(d^m/d^m t)H(X_t)\ge(-1)^{m+1}(d^m/d^m t)H(X_{Gt})$. McKean's conjecture was only considered in the univariate case before: $C_2(1,1)$ and $C_2(2,1)$ were proved by McKean and $C_2(i,1),i=3,4,5$ were proved by Zhang-Anantharam-Geng under the log-concave condition. In this paper, we prove $C_2(1,n)$, $C_2(2,n)$ and observe that McKean's conjecture might not be true for $n>1$ and $m>2$. We further propose a weaker version $C_3(m,n): (-1)^{m+1}(d^m/d^m t)H(X_t)\ge(-1)^{m+1}\frac{1}{n}(d^m/d^m t)H(X_{Gt})$ and prove $C_3(3,2)$, $C_3(3,3)$, $C_3(3,4)$, $C_3(4,2)$ under the log-concave condition. A systematical procedure to prove $C_l(m,n)$ is proposed based on semidefinite programming and the results mentioned above are proved using this procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源