论文标题
平衡3D医疗图像细分病变大小不平等的普遍损失重新加权
Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation
论文作者
论文摘要
目标不平衡会影响许多医学图像分割任务中最新深度学习方法的性能。这是一个双重问题:类不平衡 - 正类别(病变)与负类(非质量)大小相比;病变尺寸不平衡 - 大病变掩盖了小病变(对于每个图像的多个病变)。虽然前者在多项作品中得到了解决,但后者缺乏调查。我们提出了一种损失重新加权方法,以提高网络检测小病变的能力。在学习过程中,我们为每个图像体素分配了一个重量。指定的重量与病变体积成反比,因此较小的病变会获得更大的重量。我们报告了我们对众所周知的损失函数的好处,包括骰子丢失,局灶性损失和不对称的相似性损失。此外,我们将结果与其他重新加权技术进行了比较:加权跨透明和广泛的骰子损失。我们的实验表明,逆权加重大大提高了检测质量,而在最先进的水平上保留了描述质量。我们为两个CT图像的两个公开数据集发布了完整的实验管道:LITS和LUNA16(https://github.com/neuro-ml/inverse_weighting)。我们还在MR图像的私人数据库上显示了多个脑转移划分的任务的结果。
Target imbalance affects the performance of recent deep learning methods in many medical image segmentation tasks. It is a twofold problem: class imbalance - positive class (lesion) size compared to negative class (non-lesion) size; lesion size imbalance - large lesions overshadows small ones (in the case of multiple lesions per image). While the former was addressed in multiple works, the latter lacks investigation. We propose a loss reweighting approach to increase the ability of the network to detect small lesions. During the learning process, we assign a weight to every image voxel. The assigned weights are inversely proportional to the lesion volume, thus smaller lesions get larger weights. We report the benefit from our method for well-known loss functions, including Dice Loss, Focal Loss, and Asymmetric Similarity Loss. Additionally, we compare our results with other reweighting techniques: Weighted Cross-Entropy and Generalized Dice Loss. Our experiments show that inverse weighting considerably increases the detection quality, while preserves the delineation quality on a state-of-the-art level. We publish a complete experimental pipeline for two publicly available datasets of CT images: LiTS and LUNA16 (https://github.com/neuro-ml/inverse_weighting). We also show results on a private database of MR images for the task of multiple brain metastases delineation.