论文标题
Fisher-KPP方程的整个解决方案的一维对称结果
A one-dimensional symmetry result for entire solutions to the Fisher-KPP equation
论文作者
论文摘要
我们考虑整个空间中的Fisher-KPP反应扩散方程。 我们证明,如果解决方案具有主要顺序和所有时间(正和负),则指数衰减与速度大于其前沿的最小值的平面行驶波相同,那么它必须与上述行驶波相吻合。
We consider the Fisher-KPP reaction-diffusion equation in the whole space. We prove that if a solution has, to main order and for all times (positive and negative), the same exponential decay as a planar traveling wave with speed larger than the minimal one at its leading edge, then it has to coincide with the aforementioned traveling wave.