论文标题

混合表示与耦合自动编码器的学习

Mixture Representation Learning with Coupled Autoencoders

论文作者

Marghi, Yeganeh M., Gala, Rohan, Sümbül, Uygar

论文摘要

共同识别离散和连续变异因素而无需监督的混合物是揭示复杂现象的关键问题。变分推断已成为学习可解释的混合表示形式的有前途的方法。但是,高维潜在空间中的后近似值,特别是对于离散因素,仍然具有挑战性。在这里,我们使用称为CPL-Mixvae的多个交互网络提出了一个无监督的变分框架,该网络符合高维离散设置。在此框架中,通过对离散因子施加共识的约束,将每个网络的混合表示形式正规化。我们通过提供理论和实验结果来证明该框架的使用是合理的。最后,我们使用所提出的方法共同揭示了描述单细胞转录组数据集中基因表达的变异性和连续因素,其中一百多个皮质神经元类型。

Jointly identifying a mixture of discrete and continuous factors of variability without supervision is a key problem in unraveling complex phenomena. Variational inference has emerged as a promising method to learn interpretable mixture representations. However, posterior approximation in high-dimensional latent spaces, particularly for discrete factors remains challenging. Here, we propose an unsupervised variational framework using multiple interacting networks called cpl-mixVAE that scales well to high-dimensional discrete settings. In this framework, the mixture representation of each network is regularized by imposing a consensus constraint on the discrete factor. We justify the use of this framework by providing both theoretical and experimental results. Finally, we use the proposed method to jointly uncover discrete and continuous factors of variability describing gene expression in a single-cell transcriptomic dataset profiling more than a hundred cortical neuron types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源