论文标题

然后在缠结下

Over then Under Tangles

论文作者

Bar-Natan, Dror, Dancso, Zsuzsanna, van der Veen, Roland

论文摘要

超过(OU)缠结的缠结是面向缠结的缠结,其链穿过它们的所有过境,然后再穿过任何穿越。在本文中,我们讨论了滑行的想法:可以将任何缠结图的算法带到OU形式。不幸的是,该算法存在缺陷。但是,通过分析成功的案例,我们获得了辫子分类结果,我们也将其扩展到虚拟辫子,并提供Mathematica实现。我们讨论了其他成功的“滑行思想”的实例,这些实例出现在文献中 - 有时是伪装的 - 例如Drinfel的双重结构,Enriquez在Lie Bialgebras的量化方面的工作,Audoux和Meilhan的焊接同质链接的分类,

Over-then-Under (OU) tangles are oriented tangles whose strands travel through all of their over crossings before any under crossings. In this paper we discuss the idea of gliding: an algorithm by which any tangle diagram could be brought to OU form. Unfortunately, the algorithm is flawed. However, by analyzing cases in which it does succeed we obtain a braid classification result, which we also extend to virtual braids, and provide a Mathematica implementation. We discuss other instances of successful "gliding ideas" which appear in the literature - sometimes in disguise - such as the Drinfel'd double construction, Enriquez's work on quantization of Lie bialgebras, and Audoux and Meilhan's classification of welded homotopy links,

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源