论文标题
与Bernoulli和Euler多项式有关的序列的Hankel决定因素
Hankel Determinants of sequences related to Bernoulli and Euler Polynomials
论文作者
论文摘要
我们评估了与Bernoulli和Euler数量以及相应多项式的特殊值有关的各种序列的Hankel决定因素。其中一些结果是作为汉克尔决定因素的特殊情况以及伯诺利和欧拉多项式差异的特殊情况,而另一些结果是使用Bernoulli和Euler多项式衍生物的方法的后果。我们还获得了hankel的决定因素,用于总和和差异的序列以及具有小导体的某些dirichlet字符的广义bernoulli多项式。最后,我们为许多新序列(包括Bernoulli和Euler数字和多项式)收集并组织了Hankel的决定符。
We evaluate the Hankel determinants of various sequences related to Bernoulli and Euler numbers and special values of the corresponding polynomials. Some of these results arise as special cases of Hankel determinants of certain sums and differences of Bernoulli and Euler polynomials, while others are consequences of a method that uses the derivatives of Bernoulli and Euler polynomials. We also obtain Hankel determinants for sequences of sums and differences of powers and for generalized Bernoulli polynomials belonging to certain Dirichlet characters with small conductors. Finally, we collect and organize Hankel determinant identities for numerous sequences, both new and known, containing Bernoulli and Euler numbers and polynomials.