论文标题
肿瘤侵袭模型的有限元方法的收敛性和阳性
Convergence and positivity of finite element methods for a haptotaxis model of tumoral invasion
论文作者
论文摘要
在本文中,我们考虑了一个数学模型,用于在$ d $二维有限域中被肿瘤细胞侵袭宿主组织,$ d \ leq 3 $。该模型由描述癌细胞密度演化,细胞外基质蛋白密度和基质降解酶浓度演化的微分方程系统组成。我们开发了两个完全离散的方案,用于基于有限元(FE)方法近似解决方案。对于第一个数值方案,我们使用分裂技术来处理触觉项,从而引入了一个等效的系统,该系统具有由细胞外基质梯度给出的新变量。该方案是良好的,可以保留细胞外基质和降解酶的非负性。我们分析了误差估计和对常规解决方案的收敛。第二个数值方案基于等效公式,在该公式中,癌细胞密度方程通过适当的变量变化以差异形式表达。第二个数值方案保留了所有离散变量的非负性。最后,我们提供了一些与理论分析一致的数值模拟。
In this paper, we consider a mathematical model for the invasion of host tissue by tumour cells in a $d$-dimensional bounded domain, $d\leq 3$. This model consists of a system of differential equations describing the evolution of cancer cell density, the extracellular matrix protein density and the matrix degrading enzyme concentration. We develop two fully discrete schemes for approximating the solutions based on the Finite Element (FE) method. For the first numerical scheme, we use a splitting technique to deal with the haptotaxis term, leading to introduce an equivalent system with a new variable given by the gradient of extracellular matrix. This scheme is well-posed and preserves the non-negativity of extracellular matrix and the degrading enzyme. We analyze error estimates and convergence towards regular solutions. The second numerical scheme is based on an equivalent formulation in which the cancer cell density equation is expressed in a divergence form through a suitable change of variables. This second numerical scheme preserves the non-negativity of all the discrete variables. Finally, we present some numerical simulations in agreement with the theoretical analysis.