论文标题
最大定理不完整偏好
A Maximum Theorem for Incomplete Preferences
论文作者
论文摘要
我们扩展了Berge的最大定理,以允许不完整的首选项。我们首先为凸的可行集合和固定偏好提供了最大定理的简单版本。然后,我们表明,如果除了传统的连续性假设外,具有可比性域的新连续性属性,则沿一系列决策问题的最大元素的极限是极限问题中的最大元素。尽管通常不需要通过限制来保留最佳域的这种新的连续性属性,但我们提供了必要和足够的条件。
We extend Berge's Maximum Theorem to allow for incomplete preferences. We first provide a simple version of the Maximum Theorem for convex feasible sets and a fixed preference. Then, we show that if, in addition to the traditional continuity assumptions, a new continuity property for the domains of comparability holds, the limits of maximal elements along a sequence of decision problems are maximal elements in the limit problem. While this new continuity property for the domains of comparability is not generally necessary for optimality to be preserved by limits, we provide conditions under which it is necessary and sufficient.