论文标题

随机充血游戏中自动驾驶汽车的风险规避平衡

Risk-Averse Equilibrium for Autonomous Vehicles in Stochastic Congestion Games

论文作者

Yekkehkhany, Ali, Nagi, Rakesh

论文摘要

一般而言,自动驾驶汽车,无人机和车队的快速增长市场必须考虑智能和自动导航系统的设计,考虑到交通网络中不同路径的随机潜伏期。确定性网络中最短的路径问题(在拥堵游戏环境中的对应物是Wardrop平衡)已进行了广泛的研究,但众所周知,在具有随机弧延迟的交通网络中,找到最佳路径的概念是具有挑战性的。在这项工作中,我们以其一般形式的原子随机拥堵游戏提出了三类规避风险的平衡,其中电弧延迟分布取决于负载,而不一定彼此独立。这三个类别是规避风险平衡(RAE),均值方差平衡(MVE)和风险水平的条件价值$α$平衡(CVAR $_α$ e),它们的识别最佳响应的概念是基于最大程度地提高最大范围的频率,并最大程度地延迟了延迟的路径,并延长了延迟的范围,并将一定的线性组合成一定的差异,并将一定的线性组合成一定的差异。分别延迟分布。我们证明,对于任何有限的随机原子充血游戏,存在规避风险,均值和CVAR $_α$ equilibria。我们表明,对于规避风险的旅行者,由于玩家不一定沿着期望中最短的道路旅行,因此可能不会在最初提出的胸罩悖论中发生,但他们也考虑了旅行时间的不确定性。我们通过一些示例表明,当玩家规避风险并根据三类规避风险的平衡而不是衣柜平衡,无政府状态的价格可以提高。

The fast-growing market of autonomous vehicles, unmanned aerial vehicles, and fleets in general necessitates the design of smart and automatic navigation systems considering the stochastic latency along different paths in the traffic network. The longstanding shortest path problem in a deterministic network, whose counterpart in a congestion game setting is Wardrop equilibrium, has been studied extensively, but it is well known that finding the notion of an optimal path is challenging in a traffic network with stochastic arc delays. In this work, we propose three classes of risk-averse equilibria for an atomic stochastic congestion game in its general form where the arc delay distributions are load dependent and not necessarily independent of each other. The three classes are risk-averse equilibrium (RAE), mean-variance equilibrium (MVE), and conditional value at risk level $α$ equilibrium (CVaR$_α$E) whose notions of risk-averse best responses are based on maximizing the probability of taking the shortest path, minimizing a linear combination of mean and variance of path delay, and minimizing the expected delay at a specified risky quantile of the delay distributions, respectively. We prove that for any finite stochastic atomic congestion game, the risk-averse, mean-variance, and CVaR$_α$ equilibria exist. We show that for risk-averse travelers, the Braess paradox may not occur to the extent presented originally since players do not necessarily travel along the shortest path in expectation, but they take the uncertainty of travel time into consideration as well. We show through some examples that the price of anarchy can be improved when players are risk-averse and travel according to one of the three classes of risk-averse equilibria rather than the Wardrop equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源