论文标题
评估在多层网络中汇总还是分开行为的框架
A framework to evaluate whether to pool or separate behaviors in a multilayer network
论文作者
论文摘要
多层网络方法结合了不同的网络层,这些网络层通过层间边缘连接,以创建一个数学对象。这些网络可以包含各种信息类型,并代表系统的不同方面。但是,选择包含哪些信息的过程并不总是很简单。我们使用圈养的和尚鹦鹉人群(Myiopsitta Monachus)中的两种激动行为的数据,开发了一个框架,用于调查在二聚体关系规模(两个人之间)如何在二元关系中汇总或分裂行为影响个人和群体级别的社会特性。我们设计了两个参考模型,以测试行为类型跨行为类型的相互作用数量是否会导致与观察到的数据相似的结构模式。尽管行为是相关的,但第一个参考模型表明,这两种行为传达了有关某些社会特性的不同信息,因此不应合并。但是,一旦我们控制了数据稀疏性,我们发现观察到的度量与第二参考模型的测量相对应。因此,我们的最初结果可能是由于每种行为的不等频率。总体而言,我们的发现支持汇集这两种行为。有必要对数据属性影响所选测量的意识,但是我们的框架删除了这些努力,因此可以用于无数类型的行为和问题。该框架将帮助研究人员在随后的多层网络分析中使用数据之前,在使用数据之前做出知情和数据驱动的决策。
A multilayer network approach combines different network layers, which are connected by interlayer edges, to create a single mathematical object. These networks can contain a variety of information types and represent different aspects of a system. However, the process for selecting which information to include is not always straightforward. Using data on two agonistic behaviors in a captive population of monk parakeets (Myiopsitta monachus), we developed a framework for investigating how pooling or splitting behaviors at the scale of dyadic relationships (between two individuals) affects individual- and group-level social properties. We designed two reference models to test whether randomizing the number of interactions across behavior types results in similar structural patterns as the observed data. Although the behaviors were correlated, the first reference model suggests that the two behaviors convey different information about some social properties and should therefore not be pooled. However, once we controlled for data sparsity, we found that the observed measures corresponded with those from the second reference model. Hence, our initial result may have been due to the unequal frequencies of each behavior. Overall, our findings support pooling the two behaviors. Awareness of how selected measurements can be affected by data properties is warranted, but nonetheless our framework disentangles these efforts and as a result can be used for myriad types of behaviors and questions. This framework will help researchers make informed and data-driven decisions about which behaviors to pool or separate, prior to using the data in subsequent multilayer network analyses.