论文标题

改善封闭图形神经网络的远程性能

Improving the Long-Range Performance of Gated Graph Neural Networks

论文作者

Lukovnikov, Denis, Lehmann, Jens, Fischer, Asja

论文摘要

能够处理多关系图的许多流行的图形神经网络(GNN)的流行变体可能会因梯度消失而遭受。在这项工作中,我们提出了一种基于门控图神经网络的新型GNN体系结构,其能力提高了在多关系图中处理长期依赖性的能力。对不同合成任务的实验分析表明,所提出的体系结构的表现优于几个流行的GNN模型。

Many popular variants of graph neural networks (GNNs) that are capable of handling multi-relational graphs may suffer from vanishing gradients. In this work, we propose a novel GNN architecture based on the Gated Graph Neural Network with an improved ability to handle long-range dependencies in multi-relational graphs. An experimental analysis on different synthetic tasks demonstrates that the proposed architecture outperforms several popular GNN models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源