论文标题
某些归一化分析功能的估计值
Certain Estimates of Normalized Analytic Functions
论文作者
论文摘要
令$ ϕ $为打开单位磁盘$ \ mathbb {d} $上定义的归一化凸功能。对于满足二阶差异从属的统一分析函数$ f'(z)+αzf'(z)\ prec ϕ(z)$,用于所有$ z \ in \ mathbb {d} $,我们研究失真定理和成长定理。此外,检查了初始对数系数,逆系数和第二个涉及逆系数的汉克尔决定因素的边界。
Let $ϕ$ be a normalized convex function defined on open unit disk $\mathbb{D}$. For a unified class of normalized analytic functions which satisfy the second order differential subordination $f'(z)+ αz f''(z) \prec ϕ(z)$ for all $z\in \mathbb{D}$, we investigate the distortion theorem and growth theorem. Further, the bounds on initial logarithmic coefficients, inverse coefficient and the second Hankel determinant involving the inverse coefficients are examined.