论文标题
从基于个体的流行模型到McKendrick-Von Foerster PDE:建模和推断Covid-19动力学的指南
From individual-based epidemic models to McKendrick-von Foerster PDEs: A guide to modeling and inferring COVID-19 dynamics
论文作者
论文摘要
我们提出了一种统一的,可进行的方法,用于研究导致需要使用大量类型(例如,感染阶段,临床状态,危险因素类别)进行建模的复杂疾病的传播。我们表明,记录每个受感染的人的感染年龄,即自感染以来经过的时间,具有三个好处。 首先,无论类型的数量多少,都可以通过一级,一维偏微分方程(PDE)描述人口的年龄分布,称为McKendrick-von foerster方程。 $ i $的频率仅通过整合在给定年龄与年龄分布的状态$ i $的概率来获得。这种表示基于泊松采样的其他假设来推断和预测流行病的简单方法。我们使用来自Covid-19的流行病的法国数据来说明这一技术。 其次,我们的方法使用普通微分方程(ODE)的高维系统概括并简化了标准隔室模型,以说明疾病的复杂性。我们表明,此类模型始终可以在我们的框架中重写,因此可以对这些复杂模型提供低维但同等的表示。 第三,除了方法的简单性之外,我们表明我们的人口模型自然显示为一类完全基于个体基于个体的流行病模型的普遍缩放限制,其中PDE的初始条件是从一个人开始的指数增长人群的限制年龄结构。
We present a unifying, tractable approach for studying the spread of viruses causing complex diseases requiring to be modeled using a large number of types (e.g., infective stage, clinical state, risk factor class). We show that recording each infected individual's infection age, i.e., the time elapsed since infection, has three benefits. First, regardless of the number of types, the age distribution of the population can be described by means of a first-order, one-dimensional partial differential equation (PDE) known as the McKendrick-von Foerster equation. The frequency of type $i$ is simply obtained by integrating the probability of being in state $i$ at a given age against the age distribution. This representation induces a simple methodology based on the additional assumption of Poisson sampling to infer and forecast the epidemic. We illustrate this technique using French data from the COVID-19 epidemic. Second, our approach generalizes and simplifies standard compartmental models using high-dimensional systems of ordinary differential equations (ODEs) to account for disease complexity. We show that such models can always be rewritten in our framework, thus, providing a low-dimensional yet equivalent representation of these complex models. Third, beyond the simplicity of the approach, we show that our population model naturally appears as a universal scaling limit of a large class of fully stochastic individual-based epidemic models, where the initial condition of the PDE emerges as the limiting age structure of an exponentially growing population starting from a single individual.