论文标题

多重性的大型集

Large Sets with Multiplicity

论文作者

Etzion, Tuvi, Zhou, Junling

论文摘要

在设计理论中,大量组合设计一直是一个引人入胜的话题。这些设计构成了整个空间与具有相同参数的组合设计的分区。尤其是,一系列的块设计,其大小为$ k $的块是从$ n $ set中取的,是$ n $ set的所有$ k $ subsets的分区,分为$ n $ set上定义的块设计的脱节副本,并具有相同的参数。当前最有趣的问题朝这个方向发展,是是否存在大量施泰纳四重奏系统,并为它们存在的那些参数提供明确的构造。考虑到它的困难,即使是一个非平凡的秩序,也没有人提出明确的结构。因此,我们寻求相关的概括。作为概括,对于存在大量的问题,我们考虑了两个相关的问题。第一个为Steiner系统提供构造的第一个,其中每个块(四倍或$ k $ -subset)包含在恰好$μ$系统中。第二个问题是为大型H设计提供构造(主要是针对四元组,但也用于较大的块大小)。我们使用正交阵列,垂直阵列,有序设计,一组排列和一组置换术和完整图的一factorizations证明了许多参数的此类系统。

Large sets of combinatorial designs has always been a fascinating topic in design theory. These designs form a partition of the whole space into combinatorial designs with the same parameters. In particular, a large set of block designs, whose blocks are of size $k$ taken from an $n$-set, is a partition of all the $k$-subsets of the $n$-set into disjoint copies of block designs, defined on the $n$-set, and with the same parameters. The current most intriguing question in this direction is whether large sets of Steiner quadruple systems exist and to provide explicit constructions for those parameters for which they exist. In view of its difficulty no one ever presented an explicit construction even for one nontrivial order. Hence, we seek for related generalizations. As generalizations, to the existence question of large sets, we consider two related questions. The first one to provide constructions for sets on Steiner systems in which each block (quadruple or a $k$-subset) is contained in exactly $μ$ systems. The second question is to provide constructions for large set of H-designs (mainly for quadruples, but also for larger block size). We prove the existence of such systems for many parameters using orthogonal arrays, perpendicular arrays, ordered designs, sets of permutations, and one-factorizations of the complete graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源