论文标题
保存福利的$ \ varepsilon $ -BIC到BIC转型,收入损失微不足道
Welfare-Preserving $\varepsilon$-BIC to BIC Transformation with Negligible Revenue Loss
论文作者
论文摘要
在本文中,我们提供了从$ \ varepsilon $ -BIC机制转变为确切的BIC机制,而没有任何社会福利损失,并且具有添加性和可忽略的收入损失。这是保留福利并提供可忽略的收入损失的第一个$ \ varepsilon $ -BIC。鉴于需要维持社会福利的要求,收入损失的限制很紧。以前的$ \ varepsilon $ bic to BIC转型保留了社会福利,但没有收入保证〜\ citep {beihuang11},或者遭受福利损失,同时又通过多授予和加性术语(例如,〜\ citet){dasweinberg12,rubinstein18,caiiy18,citet {通过我们的转型获得的收入损失与这些早期方法无与伦比,并且可能会大大减少。 \ newnew {我们的方法与以前的复制式匹配方法不同,我们直接使用有向和加权的类型图(由类型的遗憾引起),每个代理都为一个。转换运行A \ Emph {分数旋转步骤}和A \ emph {付款降低步骤}迭代以使机制兼容。}我们还分析了$ \ VAREPSILON $指示的ex-post IC($ \ varepsilon $ -eic-eic-eic-eiic)机制}。我们在此环境中提供了具有均匀类型分布的相同收入损失保证,并为非统一分布带来了不可能的结果。我们将转换应用于基于线性的基于基于机器的自动化机理设计方法。
In this paper, we provide a transform from an $\varepsilon$-BIC mechanism into an exactly BIC mechanism without any loss of social welfare and with additive and negligible revenue loss. This is the first $\varepsilon$-BIC to BIC transformation that preserves welfare and provides negligible revenue loss. The revenue loss bound is tight given the requirement to maintain social welfare. Previous $\varepsilon$-BIC to BIC transformations preserve social welfare but have no revenue guarantee~\citep{BeiHuang11}, or suffer welfare loss while incurring a revenue loss with both a multiplicative and an additive term, e.g.,~\citet{DasWeinberg12, Rubinstein18, Cai19}. The revenue loss achieved by our transformation is incomparable to these earlier approaches and can be significantly less. \newnew{Our approach is different from the previous replica-surrogate matching methods and we directly make use of a directed and weighted type graph (induced by the types' regret), one for each agent. The transformation runs a \emph{fractional rotation step} and a \emph{payment reducing step} iteratively to make the mechanism Bayesian incentive compatible.} We also analyze $\varepsilon$-expected ex-post IC ($\varepsilon$-EEIC) mechanisms~\citep{DuettingFJLLP12}. We provide a welfare-preserving transformation in this setting with the same revenue loss guarantee for uniform type distributions and give an impossibility result for non-uniform distributions. We apply the transform to linear-programming based and machine-learning based methods of automated mechanism design.