论文标题

对数消极和对数凸式的伸长式消极的一夫一妻制

Monogamy of Logarithmic Negativity and Logarithmic Convex-Roof Extended Negativity

论文作者

Gao, Li-Min, Yan, Feng-Li, Gao, Ting

论文摘要

量子纠缠的基本特征之一是多部分量子系统之间的共享性有限,即纠缠的一夫一妻制,虽然众所周知,一夫一妻制的不平等始终可以通过具有凸度的纠缠措施来满足。在这里,我们提出了纠缠,对数凸式式延伸的消极(LCREN)的量度,满足了纠缠措施的重要特征,并研究对数消极情绪的一夫一妻制关系和lcren均未均无凸度。我们确切地表明,对数负性的$α$ th功率以及新定义的纠缠,lcren,遵守多Quipit Systems中一类一般的一般性不平等,$ 2 \ otimes2 \ otimes2 \ otimes3 $ Systems和$ 2 \ otimes2 \ otimes2 \ otimes2 \ otimes2^^n $ ln。我们以对数凸式式伸长的援助效果(LCRENOA)为$ 0 \leqβ\ leq2 $,提供多码系统的一般一夫多妻制不平等。鉴于对数负性和lcren并不是凸的,因此这些结果令人惊讶。利用对数的消极和lcren的力量,我们进一步建立了一类紧密的一夫一妻制不平等,$ 2 \ otimes2 \ otimes3 $ systems和$ 2 \ otimes2 \ otimes2 \ otimes2^{n} $在$α$ logarithmic negalitive $ 2 $ lcren $ lcren for $ lcren和lcren $ lcren for $ lcren $ lcren for $ lcren $ lcren for $ lcren和lcren $ lcren for。我们还表明,lcrenoa的$β$ TH功率遵守了多Quaribit Systems的一类紧密多象不平等,价格为$ 0 \leqβ\ leq2 $。

One of the fundamental traits of quantum entanglement is the restricted shareability among multipartite quantum systems, namely monogamy of entanglement, while it is well known that monogamy inequalities are always satisfied by entanglement measures with convexity. Here we present a measure of entanglement, logarithmic convex-roof extended negativity (LCREN) satisfying important characteristics of an entanglement measure, and investigate the monogamy relation for logarithmic negativity and LCREN both without convexity. We show exactly that the $α$th power of logarithmic negativity, and a newly defined good measure of entanglement, LCREN, obey a class of general monogamy inequalities in multiqubit systems, $2\otimes2\otimes3$ systems and $2\otimes2\otimes2^{n}$ systems for $α\geq4\ln2$. We provide a class of general polygamy inequalities of multiqubit systems in terms of logarithmic convex-roof extended negativity of assistance (LCRENoA) for $0\leqβ\leq2$. Given that the logarithmic negativity and LCREN are not convex these results are surprising. Using the power of the logarithmic negativity and LCREN, we further establish a class of tight monogamy inequalities of multiqubit systems, $2\otimes2\otimes3$ systems and $2\otimes2\otimes2^{n}$ systems in terms of the $α$th power of logarithmic negativity and LCREN for $α\geq4\ln2$. We also show that the $β$th power of LCRENoA obeys a class of tight polygamy inequalities of multiqubit systems for $0\leqβ\leq2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源