论文标题

学习依赖几何形状和基于物理的逆图像重建

Learning Geometry-Dependent and Physics-Based Inverse Image Reconstruction

论文作者

Jiang, Xiajun, Ghimire, Sandesh, Dhamala, Jwala, Li, Zhiyuan, Gyawali, Prashnna Kumar, Wang, Linwei

论文摘要

深度神经网络在欧几里得空间中显示出很大的图像重建问题潜力。但是,许多重建问题涉及成像物理学,这些物理学取决于潜在的非欧几里得几何形状。在本文中,我们提出了一种新的方法来学习利用潜在的几何和物理学的逆成像。我们首先引入了一个非欧盟编码编码网络,该网络使我们能够描述其各自的几何域上的未知和测量变量。然后,我们通过在两个几何形状的图形嵌入方式上通过两部分图对两个结构域之间的几何学物理学来了解几何依赖性物理。我们将提出的网络应用于从身体表面电位上重建心脏表面上的电活动。在一系列的概括任务和越来越多的困难中,我们证明了与其欧几里得替代方案相比,提出的网络概括了跨几何变化的能力。

Deep neural networks have shown great potential in image reconstruction problems in Euclidean space. However, many reconstruction problems involve imaging physics that are dependent on the underlying non-Euclidean geometry. In this paper, we present a new approach to learn inverse imaging that exploit the underlying geometry and physics. We first introduce a non-Euclidean encoding-decoding network that allows us to describe the unknown and measurement variables over their respective geometrical domains. We then learn the geometry-dependent physics in between the two domains by explicitly modeling it via a bipartite graph over the graphical embedding of the two geometry. We applied the presented network to reconstructing electrical activity on the heart surface from body-surface potential. In a series of generalization tasks with increasing difficulty, we demonstrated the improved ability of the presented network to generalize across geometrical changes underlying the data in comparison to its Euclidean alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源