论文标题

带电的广告 - 迪拉顿黑色孔的全息复杂性生长,分别具有固定和动力学边界

Holographic complexity growth for a charged AdS-dilaton black holes with fixed and dynamical boundary respectively

论文作者

Li, Ai-chen

论文摘要

通过使用“复杂性 - 体积”建议,在爱因斯坦 - 马克斯韦尔 - 迪拉特顿重力中考虑了全息复杂性的猜想。具体而言,我们分别计算出具有固定和动力学边界的永恒带电的ADS-DILATON黑洞的复杂性增长率。动态边界是通过引入移动的自我磨碎的brane来实现的,该勃雷在其上具有精确的FLRW形式。在固定的ADS边界的情况下,存在较晚生长速率演变的结合,而随着Dilaton耦合常数$α$的增加,该结合将变得更大。在很大的$α$限制中,我们从分析上证明,该界限是一个有限值,与黑洞质量成正比。如果是动态边界,即Brane-Bulk系统,在特定时间达到最大值后,生长速率在较晚的时间单调下降。我们发现,较晚的brane-bulk系统生长速率的演变由移动brane的速度支配。我们猜该结果是独立于模型的。

The holographic complexity conjectures are considered in a Einstein-Maxwell-Dilaton gravity, by using the "Complexity-Volume" proposal. Specifically, we calculate the growth rate of complexity for an eternal charged AdS-dilaton black holes with fixed and dynamical boundaries respectively. The dynamical boundary is achieved by introducing a moving self-graviting brane on which the induced metric has an exact FLRW form. In case of fixed AdS boundary, there exists a bound for evolution of growth rate on late time, while this bound will become larger as the dilaton coupling constant $α$ increases. In large $α$ limit, we analytically prove that this bound is a finite value which is proportional to the black hole mass. In case of dynamical boundary, namely the brane-bulk system, the growth rate decreases monotonously on late time, after reaching a maximum value at a certain time. We find that the evolution of growth rate for brane-bulk system on late time is dominated by the velocity of the moving brane. We guess this result is model-independent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源