论文标题

椭圆曲线上的点高度高于$ \ mathbb q $

Heights of points on elliptic curves over $\mathbb Q$

论文作者

Griffin, Michael, Ono, Ken, Tsai, Wei-Lun

论文摘要

在本说明中,我们通过使用合适的椭圆曲线理想的类配对$ ch _ { \ Mathrm {cl}(-d)。$$在类号码$ h(-d)$和$ t_e(-d)$,$ d $中的对数函数中\ frac {| e _ {\ mathrm {tor}}(\ Mathbb {q})|^2} {\ left(h(h(-d)+ | e _ {\ mathrm {tor}}}}}}}}(\ mathbb {q}) $$

In this note we obtain effective lower bounds for the canonical heights of non-torsion points on $E(\mathbb{Q})$ by making use of suitable elliptic curve ideal class pairings $$Ψ_{E,-D}: E(\mathbb{Q})\times E_{-D}(\mathbb{Q})\mapsto \mathrm{CL}(-D).$$ In terms of the class number $H(-D)$ and $T_E(-D)$, a logarithmic function in $D$, we prove $$ \widehat{h}(P)> \frac{|E_{\mathrm{tor}}(\mathbb{Q})|^2}{\left( H(-D)+ |E_{\mathrm{tor}}(\mathbb{Q})|\right)^2}\cdot T_E(-D). $$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源