论文标题

二进制Kerr的沉默

The silence of binary Kerr

论文作者

Aoude, Rafael, Chung, Ming-Zhi, Huang, Yu-tin, Machado, Camila S., Tam, Man-Kuan

论文摘要

非平凡的$ \ MATHCAL {S} $ - 矩阵通常意味着纠缠的产生:从传入的纯状态开始,散射通常会返回具有不存在的纠缠熵的外向状态。然后,询问是否存在非平凡的$ \ MATHCAL {S} $ - 矩阵的矩阵。在这封信中,我们认为答案是古典黑洞的散射。我们研究了任意旋转颗粒散射中的自旋键入。随着Thomas-Wigner旋转因子的增强,我们从重力诱导的$ 2 \ rightarrow 2 $振幅中得出了纠缠熵。在Eikonal限制中,我们发现相对的纠缠熵在此定义为\ textIt {差异}之间的\ textit {in}和\ textit {out} states的纠缠熵,对于\ textit {in vextit vextit {in vextit {in vextit vextit vistly vextit {in vextit vextit vextit viste {in}的次数均几乎是零的,并且均不显着,并且均不明显。这表明旋转颗粒的最小耦合(其经典极限对应于Kerr Black Hole)具有产生接近零纠缠的独特特征。

A non-trivial $\mathcal{S}$-matrix generally implies a production of entanglement: starting with an incoming pure state the scattering generally returns an outgoing state with non-vanishing entanglement entropy. It is then interesting to ask if there exists a non-trivial $\mathcal{S}$-matrix that generates no entanglement. In this letter, we argue that the answer is the scattering of classical black holes. We study the spin-entanglement in the scattering of arbitrary spinning particles. Augmented with Thomas-Wigner rotation factors, we derive the entanglement entropy from the gravitational induced $2\rightarrow 2$ amplitude. In the Eikonal limit, we find that the relative entanglement entropy, defined here as the \textit{difference} between the entanglement entropy of the \textit{in} and \textit{out}-states, is nearly zero for minimal coupling irrespective of the \textit{in}-state, and increases significantly for any non-vanishing spin multipole moments. This suggests that minimal couplings of spinning particles, whose classical limit corresponds to Kerr black hole, has the unique feature of generating near zero entanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源