论文标题

基于深度学习的脑肿瘤细分:调查

Deep Learning Based Brain Tumor Segmentation: A Survey

论文作者

Liu, Zhihua, Tong, Lei, Jiang, Zheheng, Chen, Long, Zhou, Feixiang, Zhang, Qianni, Zhang, Xiangrong, Jin, Yaochu, Zhou, Huiyu

论文摘要

脑肿瘤分割是医学图像分析中最具挑战性的问题之一。脑肿瘤分割的目的是产生对脑肿瘤区域的准确描述。近年来,深度学习方法在解决各种计算机视觉问题(例如图像分类,对象检测和语义细分)方面表现出了有希望的表现。许多基于深度学习的方法已应用于脑肿瘤分割并实现了令人鼓舞的结果。考虑到最先进的技术取得的显着突破,我们使用该调查来提供对最近开发的基于深度学习的脑肿瘤分割技术的全面研究。在本调查中选择和讨论了100多篇科学论文,并广泛涵盖了网络架构设计,不平衡条件下的细分以及多模式过程等技术方面。我们还为未来的发展方向提供了深刻的讨论。

Brain tumor segmentation is one of the most challenging problems in medical image analysis. The goal of brain tumor segmentation is to generate accurate delineation of brain tumor regions. In recent years, deep learning methods have shown promising performance in solving various computer vision problems, such as image classification, object detection and semantic segmentation. A number of deep learning based methods have been applied to brain tumor segmentation and achieved promising results. Considering the remarkable breakthroughs made by state-of-the-art technologies, we use this survey to provide a comprehensive study of recently developed deep learning based brain tumor segmentation techniques. More than 100 scientific papers are selected and discussed in this survey, extensively covering technical aspects such as network architecture design, segmentation under imbalanced conditions, and multi-modality processes. We also provide insightful discussions for future development directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源