论文标题
符号诱导,Quantum诱导和量词前倍增性
Symplectic Induction, Prequantum Induction, and Prequantum Multiplicities
论文作者
论文摘要
Frobenius互惠断言,从亚组诱导和限制为单位G模型类别中的伴随函子。在1980年代,Guillemin和Sternberg建立了Hamiltonian G空间的平行性能,不幸的是,该属性无法反映出一个以上G模块“量化”给定的Hamiltonian G空间的情况。本文提供了证据表明,这种歧义消失的类别中的类别可以通过工作来纠正这种情况。在那里,我们定义了诱导和多样性空间,并建立了Frobenius互惠以及“阶段中的诱导”特性。
Frobenius reciprocity asserts that induction from a subgroup and restriction to it are adjoint functors in categories of unitary G-modules. In the 1980s, Guillemin and Sternberg established a parallel property of Hamiltonian G-spaces, which (as we show) unfortunately fails to mirror the situation where more than one G-module "quantizes" a given Hamiltonian G-space. This paper offers evidence that the situation is remedied by working in the category of *prequantum* G-spaces, where this ambiguity disappears; there, we define induction and multiplicity spaces, and establish Frobenius reciprocity as well as the "induction in stages" property.