论文标题
亚MS,无损,时间分辨的量子状态读数
Sub-ms, nondestructive, time-resolved quantum-state readout of a single, trapped neutral atom
论文作者
论文摘要
我们通过5 $ s_ {1/2} $($ f = 2 $)在光学偶极陷阱中持有的单个$^{87} $ rb原子的荧光检测来实现快速,无损的量子状态读数。该原子是由线性偏振的读出激光束驱动的,使该方案对磁性子水平中原子种群的分布不敏感。我们在读出$ 97.6 \ pm0.2 \%$ $ 160 \ pm20 $ $ $ $ $ $的读数保真度为$> 97 \%的试验中,代表了与其他磁性状态不敏感的技术相比,原子保留的原子。我们证明,$ f = 2 $状态通过各种过渡的偶极矩阵元素的分布部分保护了光泵,并且从光学陷阱中移动了AC-Stark偏移。我们的结果可能会在中性原子量子计算和模拟中找到应用。
We achieve fast, nondestructive quantum-state readout via fluorescence detection of a single $^{87}$Rb atom in the 5$S_{1/2}$ ($F=2$) ground state held in an optical dipole trap. The atom is driven by linearly-polarized readout laser beams, making the scheme insensitive to the distribution of atomic population in the magnetic sub-levels. We demonstrate a readout fidelity of $97.6\pm0.2\%$ in a readout time of $160\pm20$ $μ$s with the atom retained in $>97\%$ of the trials, representing an advancement over other magnetic-state-insensitive techniques. We demonstrate that the $F=2$ state is partially protected from optical pumping by the distribution of the dipole matrix elements for the various transitions and the AC-Stark shifts from the optical trap. Our results are likely to find application in neutral-atom quantum computing and simulation.