论文标题

自动车辆路径跟踪的基于学习的预测误差估计和补偿器设计

Learning based Predictive Error Estimation and Compensator Design for Autonomous Vehicle Path Tracking

论文作者

Jiang, Chaoyang, Tian, Hanqing, Hu, Jibin, Zhai, Jiankun, Wei, Chao, Ni, Jun

论文摘要

模型预测控制(MPC)广泛用于自动驾驶汽车的路径跟踪,因为它能够处理各种类型的约束。但是,由于数学模型或模型线性化的误差,存在相当大的预测错误。在本文中,我们提出了一个框架,将MPC与基于学习的误差估计器和前馈补偿器相结合,以提高路径跟踪准确性。实施了极端的学习机器,以估算车辆状态反馈信息中基于模型的预测错误。离线训练数据是从由模型缺陷的常规MPC控制的车辆中收集的,分别在几种工作条件下进行路径跟踪。数据包括车辆状态和当前实际位置和相应预测位置之间的空间误差。根据估计的预测错误,我们然后设计了一个基于PID的Feedforward补偿器。通过CARSIM的模拟结果显示了预测误差的估计准确性以及提议的自动驾驶汽车路径跟踪框架的有效性。

Model predictive control (MPC) is widely used for path tracking of autonomous vehicles due to its ability to handle various types of constraints. However, a considerable predictive error exists because of the error of mathematics model or the model linearization. In this paper, we propose a framework combining the MPC with a learning-based error estimator and a feedforward compensator to improve the path tracking accuracy. An extreme learning machine is implemented to estimate the model based predictive error from vehicle state feedback information. Offline training data is collected from a vehicle controlled by a model-defective regular MPC for path tracking in several working conditions, respectively. The data include vehicle state and the spatial error between the current actual position and the corresponding predictive position. According to the estimated predictive error, we then design a PID-based feedforward compensator. Simulation results via Carsim show the estimation accuracy of the predictive error and the effectiveness of the proposed framework for path tracking of an autonomous vehicle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源