论文标题
使用模仿学习的运行时任务调度
Runtime Task Scheduling using Imitation Learning for Heterogeneous Many-Core Systems
论文作者
论文摘要
片上的特定域系统是一类异质多核系统,被认为是缩小自定义硬件加速器和可编程处理器之间性能和省力差距的关键方法。这些体系结构的全部潜力取决于在运行时最佳地将应用程序安排到可用资源。由于任务调度问题的组合性质,现有的基于优化的技术无法在运行时实现此目标。作为主要的理论贡献,本文将调度作为分类问题提出,并提出了基于分层模仿学习(IL)的调度程序,该调度程序从Oracle中学习,以最大程度地提高多个特定领域的应用程序的性能。通过无线通信和雷达域中的六个流应用程序进行了广泛的评估表明,拟议的基于IL的调度程序近似于离线甲骨文策略,其基于性能和基于能量的优化目标的精度超过99%。此外,它在运行时开销较低,并成功适应了新应用程序,多核系统配置以及应用程序特征的运行时变化,从而实现了几乎相同的性能。
Domain-specific systems-on-chip, a class of heterogeneous many-core systems, are recognized as a key approach to narrow down the performance and energy-efficiency gap between custom hardware accelerators and programmable processors. Reaching the full potential of these architectures depends critically on optimally scheduling the applications to available resources at runtime. Existing optimization-based techniques cannot achieve this objective at runtime due to the combinatorial nature of the task scheduling problem. As the main theoretical contribution, this paper poses scheduling as a classification problem and proposes a hierarchical imitation learning (IL)-based scheduler that learns from an Oracle to maximize the performance of multiple domain-specific applications. Extensive evaluations with six streaming applications from wireless communications and radar domains show that the proposed IL-based scheduler approximates an offline Oracle policy with more than 99% accuracy for performance- and energy-based optimization objectives. Furthermore, it achieves almost identical performance to the Oracle with a low runtime overhead and successfully adapts to new applications, many-core system configurations, and runtime variations in application characteristics.