论文标题
在无旋转的超导电线中运输
Transport in spinless superconducting wires
论文作者
论文摘要
我们考虑了通过Kitaev型晶格汉密尔顿(Hamiltonian)描述的无旋转超导体模型中的电子传输,其中通过超导配对项对电子相互作用进行建模。将超导体夹在两种在不同温度和化学势下保持的正常金属之间,并且本身被建模为非相互作用的无旋转费米子。对于此设置,我们使用Quantum langevin方程方法计算系统的确切稳态特性。粒子电流,能量电流和其他两点相关的封闭形式的精确表达式以landauer型形式获得,并涉及两个非平衡的绿色功能。当前的表达式被认为是具有简单物理解释的三个术语的总和。然后,我们讨论一种数值方法,在其中从完整的二次汉密尔顿人描述系统和铅的完全二次汉密尔顿人的特征性构建了系统的两个点相关器的时间进化。从对应于热平衡中的引线和任意状态的系统的初始状态开始,在复发时间之前,相关的长期解决方案为我们提供了稳态的特性。我们使用这种独立的数值方法来验证精确解决方案的结果。我们还分析研究了高能量结合状态的存在,并获得了其对两个点相关因子的贡献的表达。作为我们一般形式主义的应用,我们介绍了导热电导和具有下一个最近邻居相互作用的基塔夫链的导电结果,这允许具有不同绕组数的拓扑阶段。
We consider electron transport in a model of a spinless superconductor described by a Kitaev type lattice Hamiltonian where the electron interactions are modelled through a superconducting pairing term. The superconductor is sandwiched between two normal metals kept at different temperatures and chemical potentials and are themselves modelled as non-interacting spinless fermions. For this set-up we compute the exact steady state properties of the system using the quantum Langevin equation approach. Closed form exact expressions for particle current, energy current and other two-point correlations are obtained in the Landauer-type forms and involve two nonequilibrium Green's functions. The current expressions are found out to be sum of three terms having simple physical interpretations. We then discuss a numerical approach where we construct the time-evolution of the two point correlators of the system from the eigenspectrum of the complete quadratic Hamiltonian describing the system and leads. By starting from an initial state corresponding to the leads in thermal equilibrium and the system in an arbitrary state, the long time solution for the correlations, before recurrence times, gives us steady state properties. We use this independent numerical method for verifying the results of the exact solution. We also investigate analytically the presence of high energy bound states and obtain expressions for their contributions to two point correlators. As applications of our general formalism we present results on thermal conductance and on the conductance of a Kitaev chain with next nearest neighbour interactions which allows topological phases with different winding numbers.