论文标题

可见的红外人员重新识别的动态双重聚合学习

Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person Re-Identification

论文作者

Ye, Mang, Shen, Jianbing, Crandall, David J., Shao, Ling, Luo, Jiebo

论文摘要

可见的红外人员重新识别(VI-REID)是一个具有挑战性的跨模式的行人检索问题。由于较大的类内变化和大量样品噪声的交叉模式差异,因此很难学习判别零件特征。相反,现有的Vi-Reid方法倾向于学习全球表示,这些表示的能力有限,并且对嘈杂图像的鲁棒性较弱。在本文中,我们提出了一种新型的动态双动力聚合(DDAG)学习方法,通过挖掘模式内部零件级别和跨模式的图形级别的上下文提示。我们提出了一个模式内加权零件注意模块,以通过对零件关系挖掘的域知识施加域知识来提取歧视性零件聚集的特征。为了增强针对嘈杂样本的鲁棒性,我们引入了跨模式图结构的注意力,以通过两种模式的上下文关系增强表示形式。我们还制定了无参数的动态双重聚合学习策略,以渐进的联合训练方式适应两个组件。广泛的实验表明,DDAG在各种设置下的最新方法都优于最先进的方法。

Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Due to the large intra-class variations and cross-modality discrepancy with large amount of sample noise, it is difficult to learn discriminative part features. Existing VI-ReID methods instead tend to learn global representations, which have limited discriminability and weak robustness to noisy images. In this paper, we propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID. We propose an intra-modality weighted-part attention module to extract discriminative part-aggregated features, by imposing the domain knowledge on the part relationship mining. To enhance robustness against noisy samples, we introduce cross-modality graph structured attention to reinforce the representation with the contextual relations across the two modalities. We also develop a parameter-free dynamic dual aggregation learning strategy to adaptively integrate the two components in a progressive joint training manner. Extensive experiments demonstrate that DDAG outperforms the state-of-the-art methods under various settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源