论文标题
DWMD:特定于域特异性隐藏表示形式匹配的维度加权订单时刻差异
DWMD: Dimensional Weighted Orderwise Moment Discrepancy for Domain-specific Hidden Representation Matching
论文作者
论文摘要
在无监督域适应(UDA)的背景下,知识转移从源域转移到不同但语义上相关的目标域一直是一个重要的话题。该领域的一个关键挑战是建立一个可以准确测量两个均匀域之间的数据分布差异并在分布对齐中采用的度量,尤其是在隐藏激活空间中特征表示的匹配中。现有的分配匹配方法可以解释为未能明确订购的高阶矩或满足实际用途中某些假设的先决条件。我们提出了一个基于新颖的力矩概率分布度量,称为尺寸加权订单时刻差异(DWMD),以在UDA方案中匹配特征表示。我们的度量函数利用了一个用于高阶时矩对准的系列,从理论上讲,我们证明我们的DWMD度量函数是无错误的,这意味着它可以严格反映域之间的分布差异,并且没有任何特征分布假设而无效。另外,由于每个特征维度中的概率分布之间的差异是不同的,因此在我们的函数中考虑了维度加权。我们进一步计算了在实际应用中DWMD度量的经验估计的误差结合。基准数据集的全面实验表明,我们的方法得出了最新的分布指标。
Knowledge transfer from a source domain to a different but semantically related target domain has long been an important topic in the context of unsupervised domain adaptation (UDA). A key challenge in this field is establishing a metric that can exactly measure the data distribution discrepancy between two homogeneous domains and adopt it in distribution alignment, especially in the matching of feature representations in the hidden activation space. Existing distribution matching approaches can be interpreted as failing to either explicitly orderwise align higher-order moments or satisfy the prerequisite of certain assumptions in practical uses. We propose a novel moment-based probability distribution metric termed dimensional weighted orderwise moment discrepancy (DWMD) for feature representation matching in the UDA scenario. Our metric function takes advantage of a series for high-order moment alignment, and we theoretically prove that our DWMD metric function is error-free, which means that it can strictly reflect the distribution differences between domains and is valid without any feature distribution assumption. In addition, since the discrepancies between probability distributions in each feature dimension are different, dimensional weighting is considered in our function. We further calculate the error bound of the empirical estimate of the DWMD metric in practical applications. Comprehensive experiments on benchmark datasets illustrate that our method yields state-of-the-art distribution metrics.