论文标题

通过年轻宽面效应从胶体纳米晶体的半导体纳米线的激光驱动的生长

Laser-Driven Growth of Semiconductor Nanowires from Colloidal Nanocrystals via the Young-Laplace Effect

论文作者

Pandres, Elena P., Crane, Matthew J., Davis, E. James, Pauzauskie, Peter J., Holmberg, Vincent C.

论文摘要

通过基于蒸气和溶液的过程生产纳米线的能力使纳米线材料系统驱动了广泛的技术应用。常规的,基于蒸气的纳米线合成器已实现了对纳米线组成和相位的精确控制。但是,基于蒸气的纳米线增长采用批处理过程,具有专门的压力管理系统,旨在在高温下运行,从而限制了吞吐量。最近开发的基于解决方案的纳米线增长过程具有提高的可伸缩性,但可能需要更广泛的压力和温度管理系统。在这里,我们展示了一个连续的基于溶液的纳米线生长过程,该过程利用了胶体金属纳米晶体在辐射下的大型年轻环境界面压力和胶体金属纳米晶体的集体加热效应,以驱动半导体纳米线纳米型纳米线生长光,而无需高压或高素质设备。在此过程中,激光辐照含有金属纳米晶体和半导体前体的溶液。吸收光后,金属纳米晶体会迅速加热,从而诱导半导体前体分解和纳米线生长。此过程是在标准条件下在简单玻璃器皿的台式上执行的。为了证明这项技术的通用性,我们合成了三个不同的半导体纳米线材料系统:二鼠种子的锗纳米线,二晶种子的硫晶壳硒化纳米线和这胞种子种子的也种植的也属也。该过程的简单性和多功能性为一系列实验和技术打开了门,包括在线组合鉴定优化的反应参数,原位光谱测量值,以研究基于溶液的纳米线的生长,以及具有复杂成分或复杂成分或合理融合的浓度的纳米线的潜在产生。

The ability to produce nanowires through vapor- and solution-based processes has propelled nanowire material systems toward a wide range of technological applications. Conventional, vapor-based nanowire syntheses have enabled precise control over nanowire composition and phase. However, vapor-based nanowire growth employs batch processes with specialized pressure management systems designed to operate at high temperatures, limiting throughput. More recently developed solution-based nanowire growth processes have improved scalability but can require even more extensive pressure and temperature management systems. Here, we demonstrate a continuous-flow, solution-based nanowire growth process that utilizes the large Young-Laplace interfacial surface pressures and collective heating effects of colloidal metal nanocrystals under irradiation to drive semiconductor nanowire growth photothermally without the need for high-pressure or high-temperature equipment. In this process, a laser irradiates a solution containing metal nanocrystals and semiconductor precursors. Upon light absorption, the metal nanocrystals heat rapidly, inducing semiconductor precursor decomposition and nanowire growth. This process is performed on a benchtop in simple glassware under standard conditions. To demonstrate the generality of this technique, we synthesized three distinct semiconductor nanowire material systems: bismuth-seeded germanium nanowires, bismuth-seeded cadmium selenide nanowires, and indium-seeded germanium nanowires. The simplicity and versatility of this process opens the door to a range of experiments and technologies including in-line combinatorial identification of optimized reaction parameters, in situ spectroscopic measurements to study solution-based nanowire growth, and the potential production of nanowires with complex compositions or rationally incorporated dopants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源