论文标题

Adeles和数理论的模型理论

Model Theory of Adeles and Number Theory

论文作者

Derakhshan, Jamshid

论文摘要

本文是对模型理论和应用模型理论,代数和数字理论的模型理论的调查。第1-12节关注的ADELES和结果是与Angus MacIntyre的联合作品。所涵盖的主题包括消除丰富布尔代数的量化量,限制产品中的量化器消除以及自然语言中代数品种的Adeles和Adele空间中的量化量,ADELES的可定义子集及其度量以及其解决方案,解决了1968年的AX问题,从1968年开始,$ \ MATHBB $ \ MATHBB $ \ MATHBB {Z} $ \ MATHBB {在Adeles,第二种稳定嵌入的稳定性理论概念和第二种属性的稳定性理论概念,Adele圈的稳定性理论概念,Adele圈的稳定性理论概念,Adele圈的稳定性理论概念,对于限制性的产品,与Adeles的语言相关,是限制性的,均与Ferfermans-Ferfermants A verems and and anders anders anders verfermans-verfermants and and herems verferems-eorem-hyors,在数字理论中,Adeles中的想象力和空间Adele类。 第13-18节关注的是与Zeta积分和$ L $函数的数字理论的联系。受Adeles模型理论的启发,我提出了一种模型理论方法,用于$ GL_1 $(TATE的论文)和$ GL_2 $(Jacquet-Langlands的作品)上的自动形式形式,并提出了几个概念,问题和问题。主要思想是制定可构造的阿素积分的概念,并观察到Tate和Jacquet-Langlands的积分是可构造的。这些可构造的积分与模型理论中的$ p $ - 亚种和动机积分有关。

This paper is a survey on model theory of adeles and applications to model theory, algebra, and number theory. Sections 1-12 concern model theory of adeles and the results are joint works with Angus Macintyre. The topics covered include quantifier elimination in enriched Boolean algebras, quantifier elimination in restricted products and in adeles and adele spaces of algebraic varieties in natural languages, definable subsets of adeles and their measures, solution to a problem of Ax from 1968 on decidability of the rings $\mathbb{Z}/m\mathbb{Z}$ for all $m>1$, definable sets of minimal idempotents (or "primes of the number field" ) in the adeles, stability-theoretic notions of stable embedding and tree property of the second kind, elementary equivalence and isomorphism for adele rings, axioms for rings elementarily equivalent to restricted products and for the adeles, converse to Feferman-Vaught theorems, a language for adeles relevant for Hilbert symbols in number theory, imaginaries in adeles, and the space adele classes. Sections 13-18 are concerned with connections to number theory around zeta integrals and $L$-functions. Inspired by our model theory of adeles, I propose a model-theoretic approach to automorphic forms on $GL_1$ (Tate's thesis) and $GL_2$ (work of Jacquet-Langlands), and formulate several notions, problems and questions. The main idea is to formulate notions of constructible adelic integrals and observe that the integrals of Tate and Jacquet-Langlands are constructible. These constructible integrals are related to the $p$-adic and motivic integrals in model theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源