论文标题

基于碰撞的微观计算的信息要求

Information Requirements of Collision-Based Micromanipulation

论文作者

Nilles, Alexandra Q., Pervan, Ana, Berrueta, Thomas A., Murphey, Todd D., LaValle, Steven M.

论文摘要

我们对几种机器人设计的相对功率进行以任务为中心的形式分析,灵感来自微型机器人系统的独特属性和约束。我们感兴趣的任务是对象操作,因为它是更复杂的应用程序(例如微型组装或细胞操纵)的基本先决条件。由于在微观尺度上观察和控制剂的困难的激励,我们专注于边界相互作用的设计:机器人与对象或环境边界相撞时的运动策略(否则称为弹跳规则)。我们对周期性``弹跳''机器人轨迹的感应,记忆和驱动要求的条件最小,这些机器人轨迹将物体朝着所需方向移动到机器人对象碰撞引起的附带力。使用信息空间框架和层次控制器,我们比较了几个机器人设计,强调了在不同初始条件下目标完成的信息要求,以及识别无法弥补的任务失败所需的内容。最后,我们提出了边界相互作用的物理动机模型,并分析了所得轨迹的鲁棒性和动力学特性。

We present a task-centered formal analysis of the relative power of several robot designs, inspired by the unique properties and constraints of micro-scale robotic systems. Our task of interest is object manipulation because it is a fundamental prerequisite for more complex applications such as micro-scale assembly or cell manipulation. Motivated by the difficulty in observing and controlling agents at the micro-scale, we focus on the design of boundary interactions: the robot's motion strategy when it collides with objects or the environment boundary, otherwise known as a bounce rule. We present minimal conditions on the sensing, memory, and actuation requirements of periodic ``bouncing'' robot trajectories that move an object in a desired direction through the incidental forces arising from robot-object collisions. Using an information space framework and a hierarchical controller, we compare several robot designs, emphasizing the information requirements of goal completion under different initial conditions, as well as what is required to recognize irreparable task failure. Finally, we present a physically-motivated model of boundary interactions, and analyze the robustness and dynamical properties of resulting trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源