论文标题

Wordcraft:基准定价代理的环境

WordCraft: An Environment for Benchmarking Commonsense Agents

论文作者

Jiang, Minqi, Luketina, Jelena, Nardelli, Nantas, Minervini, Pasquale, Torr, Philip H. S., Whiteson, Shimon, Rocktäschel, Tim

论文摘要

快速解决广泛的现实任务的能力需要对世界有常识的理解。然而,如何最好地从自然语言语料库中提取此类知识并将其与加强学习(RL)代理集成在一起仍然是一个开放的挑战。这部分是由于缺乏轻巧的仿真环境,这些模拟环境足够反映了现实世界的语义,并提供了关于RL环境中观察的知识来源。为了更好地启用有关使用常识知识的代理商的研究,我们提出了基于Little Alchemy 2的RL环境。这种轻巧的环境迅速运行和建立在受实际语义启发的实体和关系上。我们在此新的基准上评估了几种表示学习方法,并提出了一种将知识图与RL代理集成的新方法。

The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To better enable research on agents making use of commonsense knowledge, we propose WordCraft, an RL environment based on Little Alchemy 2. This lightweight environment is fast to run and built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this new benchmark and propose a new method for integrating knowledge graphs with an RL agent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源