论文标题
提高了最小总和顶点盖和广义最小总和集盖的近似值
Improved Approximations for Min Sum Vertex Cover and Generalized Min Sum Set Cover
论文作者
论文摘要
我们研究了广义的最小值集盖(GMSSC)问题,其中给出了具有任意覆盖要求$ k_e $的Hyperedges $ e $的集合,目标是找到顶点的订购,以最大程度地减少Hyperedges的总覆盖时间;当$ k_e $中出现在订购中时,HyperEdge $ e $首次被认为是$ k_e $。我们给出了GMSSC的$ 4.642 $近似算法,接近最佳的$ 4 $,已经用于经典的特殊情况(所有$ k_e = 1 $)的最小值套装(MSSC),由Feige,lovász和Tetali研究,并在先前已知的$ 12.4.4 $ futy futy fy fy fy fy imenk和sviridenka andka和sviridenka derko in i imenko andka andko in imnko andko in kneko ands sviridenko andko ka.我们的算法是基于通过合适的内核转换LP溶液并应用随机舍入的。这也为MSSC提供了基于LP的$ 4 $近似值。作为对我们算法的分析的一部分,我们还在独立的Bernoulli随机变量总和的下尾部得出了不平等,这可能具有独立的兴趣和更广泛的效用。 另一个众所周知的特殊情况是最小总和顶点封面(MSVC)问题,其中输入HyperGraph是图形,$ k_e = 1 $,对于每个边缘。我们为MSVC提供了$ 16/9的近似值,并显示了自然LP放松的匹配完整性差距。这可以改善Barenholz,Feige和Peleg的先前最佳$ 1.999946 $。 (声称$ 1.79 $ $ 1.79的近似结果是MSVC的iWata,Tetali和Tripathi的结果是不幸的,看似不可用的,错误的错误。)最后,我们重新访问MSSC并考虑了$ \ ell_p $ covery of the Myperedges的规范。使用双拟合参数,我们表明天然贪婪算法达到了紧密,最高np- hard,$(p+1)^{1+1/p} $的近似保证,对于所有$ p \ ge 1 $。对于$ p = 1 $,这提供了MSSC $ 4 $近似的另一个证明。
We study the generalized min sum set cover (GMSSC) problem, wherein given a collection of hyperedges $E$ with arbitrary covering requirements $k_e$, the goal is to find an ordering of the vertices to minimize the total cover time of the hyperedges; a hyperedge $e$ is considered covered by the first time when $k_e$ many of its vertices appear in the ordering. We give a $4.642$ approximation algorithm for GMSSC, coming close to the best possible bound of $4$, already for the classical special case (with all $k_e=1$) of min sum set cover (MSSC) studied by Feige, Lovász and Tetali, and improving upon the previous best known bound of $12.4$ due to Im, Sviridenko and van der Zwaan. Our algorithm is based on transforming the LP solution by a suitable kernel and applying randomized rounding. This also gives an LP-based $4$ approximation for MSSC. As part of the analysis of our algorithm, we also derive an inequality on the lower tail of a sum of independent Bernoulli random variables, which might be of independent interest and broader utility. Another well-known special case is the min sum vertex cover (MSVC) problem, in which the input hypergraph is a graph and $k_e = 1$, for every edge. We give a $16/9$ approximation for MSVC, and show a matching integrality gap for the natural LP relaxation. This improves upon the previous best $1.999946$ approximation of Barenholz, Feige and Peleg. (The claimed $1.79$ approximation result of Iwata, Tetali and Tripathi for the MSVC turned out have an unfortunate, seemingly unfixable, mistake in it.) Finally, we revisit MSSC and consider the $\ell_p$ norm of cover-time of the hyperedges. Using a dual fitting argument, we show that the natural greedy algorithm achieves tight, up to NP-hardness, approximation guarantees of $(p+1)^{1+1/p}$, for all $p\ge 1$. For $p=1$, this gives yet another proof of the $4$ approximation for MSSC.