论文标题

Chung-diaconis-Graham随机过程的多重对称版本

A multiplicatively symmetrized version of the Chung-Diaconis-Graham random process

论文作者

Hildebrand, Martin

论文摘要

本文考虑了$ x_ {n+1}表格的随机过程$ p(a_n = 2)= p(a_n =(p+1)/2)= 1/2 $和$ p(b_n = 1)= p(b_n = 0)= p(b_n = -1)= 1/3 $。这可以看作是Chung,Diaconis和Graham的随机过程的多重对称版本。本文表明,对于$ x_n $的订单$(\ log p)^2 $台阶就足以接近所有奇数$ p $的整数上的均匀分布,而订单$(\ log p)^2 $ step对于$ x_n $来说是必要的,即可在整数上均匀分布在整数mod $ p $上。

This paper considers random processes of the form $X_{n+1}=a_nX_n+b_n \pmod p$ where $p$ is odd, $X_0=0$, $(a_0,b_0), (a_1,b_1), (a_2,b_2),...$ are i.i.d., and $a_n$ and $b_n$ are independent with $P(a_n=2)=P(a_n=(p+1)/2)=1/2$ and $P(b_n=1)=P(b_n=0)=P(b_n=-1)=1/3$. This can be viewed as a multiplicatively symmetrized version of a random process of Chung, Diaconis, and Graham. This paper shows that order $(\log p)^2$ steps suffice for $X_n$ to be close to uniformly distributed on the integers mod $p$ for all odd $p$ while order $(\log p)^2$ steps are necessary for $X_n$ to be close to uniformly distributed on the integers mod $p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源