论文标题

比例尺肩改善暹罗跟踪

Scale Equivariance Improves Siamese Tracking

论文作者

Sosnovik, Ivan, Moskalev, Artem, Smeulders, Arnold

论文摘要

暹罗跟踪器将跟踪变成模板和框架中候选区域之间的相似性估计。从数学上讲,相似性函数成功的关键要素之一是翻译等效性。非翻译 - 等级体系结构在训练过程中会引起位置偏差,因此目标位置将很难从特征空间中恢复。在现实生活中,除了旋转或缩放等翻译以外,对象会经历各种转换。除非模型具有处理它们的内部机制,否则相似性可能会降低。在本文中,我们专注于扩展,我们旨在为暹罗网络配备额外的内置尺度均衡力,以捕获先验目标的自然变化。我们开发了比例等级的暹罗跟踪器的理论,并为如何制作各种现有的跟踪器规模量表提供了一个简单的食谱。我们提出了Se-Siamfc,这是根据食谱构建的SIAMFC的比例等级变体。我们在OTB和投票基准以及合成生成的T-MNIST和S-MNIST数据集上进行实验。我们证明,内置的附加量表对象可用于视觉对象跟踪。

Siamese trackers turn tracking into similarity estimation between a template and the candidate regions in the frame. Mathematically, one of the key ingredients of success of the similarity function is translation equivariance. Non-translation-equivariant architectures induce a positional bias during training, so the location of the target will be hard to recover from the feature space. In real life scenarios, objects undergoe various transformations other than translation, such as rotation or scaling. Unless the model has an internal mechanism to handle them, the similarity may degrade. In this paper, we focus on scaling and we aim to equip the Siamese network with additional built-in scale equivariance to capture the natural variations of the target a priori. We develop the theory for scale-equivariant Siamese trackers, and provide a simple recipe for how to make a wide range of existing trackers scale-equivariant. We present SE-SiamFC, a scale-equivariant variant of SiamFC built according to the recipe. We conduct experiments on OTB and VOT benchmarks and on the synthetically generated T-MNIST and S-MNIST datasets. We demonstrate that a built-in additional scale equivariance is useful for visual object tracking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源