论文标题

必然是最佳的单方面匹配

Necessarily Optimal One-Sided Matchings

论文作者

Hosseini, Hadi, Menon, Vijay, Shah, Nisarg, Sikdar, Sujoy

论文摘要

我们研究了将$ n $代理商与$ n $对象相匹配的经典问题,在这些问题上,代理商对对象的偏好排名。我们专注于匹配文献中的两个流行的Desiderata:帕累托最优性和排名最大性。我们的目标不是要求代理人报告他们的完整偏好,而是从部分偏好中学习理想的匹配,特别是在部分偏好完成下必定是帕累托最佳(NPO)或必然是级别最大最大(NRM)的匹配。我们专注于顶级$ K $模型,在该模型中,代理商揭示了其首选项排名的前缀。我们设计有效的算法来检查给定的匹配是NPO还是NRM,并检查给定顶部$ K $部分首选项是否存在此类匹配。我们还研究在线算法,以适应偏向于部分偏好,并证明其竞争比率的界限。

We study the classical problem of matching $n$ agents to $n$ objects, where the agents have ranked preferences over the objects. We focus on two popular desiderata from the matching literature: Pareto optimality and rank-maximality. Instead of asking the agents to report their complete preferences, our goal is to learn a desirable matching from partial preferences, specifically a matching that is necessarily Pareto optimal (NPO) or necessarily rank-maximal (NRM) under any completion of the partial preferences. We focus on the top-$k$ model in which agents reveal a prefix of their preference rankings. We design efficient algorithms to check if a given matching is NPO or NRM, and to check whether such a matching exists given top-$k$ partial preferences. We also study online algorithms for eliciting partial preferences adaptively, and prove bounds on their competitive ratio.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源