论文标题

非对称的iSODEDEMINEDEM-BEM-BEM耦合

Non-symmetric isogeometric FEM-BEM couplings

论文作者

Elasmi, Mehdi, Erath, Christoph, Kurz, Stefan

论文摘要

我们在一个iSODEOMETIOM框架中介绍了有限元和边界元素方法的耦合,以近似二维拉普拉斯接口问题或由两个不相关域组成的边界值问题。我们考虑有限域中的有限元方法,以模拟可能的非线性材料。边界元素方法应用于材料行为是线性的无界或薄域。等几何框架允许组合不同的设计和分析工具:首先,我们考虑使用相同类型的NURBS参数化来进行精确的几何表示,其次,我们将数值分析用于Galerkin近似值。此外,它有助于执行H-和P-REFINEMENT。为了进行分析,我们考虑了强烈单调和Lipschitz连续操作员的框架,以确保耦合系统的适当性。此外,我们提供了先验误差估计。我们还显示了解决方案功能误差的改善的收敛行为,该误差可能会使某些假设下的速率增加一倍。数值示例总结了说明理论结果的工作。

We present a coupling of the Finite Element and the Boundary Element Method in an isogeometric framework to approximate either two-dimensional Laplace interface problems or boundary value problems consisting in two disjoint domains. We consider the Finite Element Method in the bounded domains to simulate possibly non-linear materials. The Boundary Element Method is applied in unbounded or thin domains where the material behavior is linear. The isogeometric framework allows to combine different design and analysis tools: first, we consider the same type of NURBS parameterizations for an exact geometry representation and second, we use the numerical analysis for the Galerkin approximation. Moreover, it facilitates to perform h- and p-refinements. For the sake of analysis, we consider the framework of strongly monotone and Lipschitz continuous operators to ensure well-posedness of the coupled system. Furthermore, we provide an a priori error estimate. We additionally show an improved convergence behavior for the errors in functionals of the solution that may double the rate under certain assumptions. Numerical examples conclude the work which illustrate the theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源