论文标题

基于心理模型的政策的顺序解释

Sequential Explanations with Mental Model-Based Policies

论文作者

Yeung, Arnold YS, Joshi, Shalmali, Williams, Joseph Jay, Rudzicz, Frank

论文摘要

跨双方解释的行为是一个反馈循环,其中一个提供了有关需要解释的信息,而另一种则提供了与此信息相关的解释。我们采用强化学习框架,该框架通过基于说明的当前心理模型提供解释来模拟这种格式。我们进行了新颖的在线人类实验,使用观察参与者的心理模型的策略,选择并将各种解释方法产生的解释提供给参与者,以优化可解释性代理。我们的结果表明,与随机选择基线相比,基于心理模型的策略(锚定在我们提出的状态表示中)可能会增加多个顺序解释的解释性。这项工作提供了有关如何选择如何增加用户相关信息的解释以及进行人体基础实验以了解可解释性的洞察力。

The act of explaining across two parties is a feedback loop, where one provides information on what needs to be explained and the other provides an explanation relevant to this information. We apply a reinforcement learning framework which emulates this format by providing explanations based on the explainee's current mental model. We conduct novel online human experiments where explanations generated by various explanation methods are selected and presented to participants, using policies which observe participants' mental models, in order to optimize an interpretability proxy. Our results suggest that mental model-based policies (anchored in our proposed state representation) may increase interpretability over multiple sequential explanations, when compared to a random selection baseline. This work provides insight into how to select explanations which increase relevant information for users, and into conducting human-grounded experimentation to understand interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源